Disulfide bond oxidoreductase DsbA2 of Legionella pneumophila exhibits protein disulfide isomerase activity.

نویسندگان

  • Zegbeh Z Kpadeh
  • Max Jameson-Lee
  • Anthony J Yeh
  • Olga Chertihin
  • Igor A Shumilin
  • Rafik Dey
  • Shandra R Day
  • Paul S Hoffman
چکیده

The extracytoplasmic assembly of the Dot/Icm type IVb secretion system (T4SS) of Legionella pneumophila is dependent on correct disulfide bond (DSB) formation catalyzed by a novel and essential disulfide bond oxidoreductase DsbA2 and not by DsbA1, a second nonessential DSB oxidoreductase. DsbA2, which is widely distributed in the microbial world, is phylogenetically distinct from the canonical DsbA oxidase and the DsbC protein disulfide isomerase (PDI)/reductase of Escherichia coli. Here we show that the extended N-terminal amino acid sequence of DsbA2 (relative to DsbA proteins) contains a highly conserved 27-amino-acid dimerization domain enabling the protein to form a homodimer. Complementation tests with E. coli mutants established that L. pneumophila dsbA1, but not the dsbA2 strain, restored motility to a dsbA mutant. In a protein-folding PDI detector assay, the dsbA2 strain, but not the dsbA1 strain, complemented a dsbC mutant of E. coli. Deletion of the dimerization domain sequences from DsbA2 produced the monomer (DsbA2N), which no longer exhibited PDI activity but complemented the E. coli dsbA mutant. PDI activity was demonstrated in vitro for DsbA2 but not DsbA1 in a nitrocefin-based mutant TEM β-lactamase folding assay. In an insulin reduction assay, DsbA2N activity was intermediate between those of DsbA2 and DsbA1. In L. pneumophila, DsbA2 was maintained as a mixture of thiol and disulfide forms, while in E. coli, DsbA2 was present as the reduced thiol. Our studies suggest that DsbA2 is a naturally occurring bifunctional disulfide bond oxidoreductase that may be uniquely suited to the majority of intracellular bacterial pathogens expressing T4SSs as well as in many slow-growing soil and aquatic bacteria.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential activity of rice protein disulfide isomerase family members for disulfide bond formation and reduction

Protein disulfide isomerases (PDIs), a family of thiol-disulfide oxidoreductases that are ubiquitous in all eukaryotes, are the principal catalysts for disulfide bond formation. Here, we investigated three rice (Oryza sativa) PDI family members (PDIL1;1, PDIL1;4, and PDIL2;3) and found that PDIL1;1 exhibited the highest catalytic activity for both disulfide bond formation and disulfide bond red...

متن کامل

Analysis of the Isomerase and Chaperone-Like Activities of an Amebic PDI (EhPDI)

Protein disulfide isomerases (PDI) are eukaryotic oxidoreductases that catalyze the formation and rearrangement of disulfide bonds during folding of substrate proteins. Structurally, PDI enzymes share as a common feature the presence of at least one active thioredoxin-like domain. PDI enzymes are also involved in holding, refolding, and degradation of unfolded or misfolded proteins during stres...

متن کامل

Two pairs of conserved cysteines are required for the oxidative activity of Ero1p in protein disulfide bond formation in the endoplasmic reticulum.

In the major pathway for protein disulfide-bond formation in the endoplasmic reticulum (ER), oxidizing equivalents flow from the conserved ER-membrane protein Ero1p to secretory proteins via protein disulfide isomerase (PDI). Herein, a mutational analysis of the yeast ERO1 gene identifies two pairs of conserved cysteines likely to form redox-active disulfide bonds in Ero1p. Cys100, Cys105, Cys3...

متن کامل

Converting a Sulfenic Acid Reductase into a Disulfide Bond Isomerase

AIMS Posttranslational formation of disulfide bonds is essential for the folding of many secreted proteins. Formation of disulfide bonds in a protein with more than two cysteines is inherently fraught with error and can result in incorrect disulfide bond pairing and, consequently, misfolded protein. Protein disulfide bond isomerases, such as DsbC of Escherichia coli, can recognize mis-oxidized ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 195 8  شماره 

صفحات  -

تاریخ انتشار 2013